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Abstract—Fifteen methods for predicting laminar heat transfer coefficients are analysed and classified.
Then each is applied to the problem of calculating the distribution of Nusselt number around the
leading half of a circular cylinder in laminar flow. Large differences are shown to exist beween the

predictions of the theories.

Comparison is made with the “exact” solution of Frossling and the experimental data of Schmidt and
Wenner. Short of more reliable experimental data, no final conclusions can be drawn about the
relative accuracy of the theoretical methods.

NOTATION

specific heat of fluid, (equation P-3),
(Btu/Ib°F);
a function used in Skopets’ method,
(Table 1);
dimensionless stream function defined
by
f = (@/uc) v [(duc/dx) (1/8 v)],

(¢ being defined by
u = &/0y), (equation OS-1), (—);
= o713 [(1/B) (4ifv) (duc/dx)] 72,
(equation OI-3), (—);
ratio of displacement thickness to
momentum thickness, (equation A-1),
(—);
ratio of momentum thickness to shear
thickness, (equation A-2). (—);
local heat transfer coefficient
= — k(0t/8y)s/(ts — tc), (Btu/ft?h °F);
thermal conductivity of fluid, (equation
P-3), (Btu/ft h°F);
reference length of the body; diameter
for circular cylinder, (ft);
= ug (d*ug/dx?/(duc/dx)?, (—);
local Nusselt number, = AL/k, (—);
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P,

= [(1/B) (4,4,/v) (duc/dx)}'/?; thus for
“similar” flows

p =073, from equations (43) and
(46) in [26], (equation OI-3), (—);
Reynolds number, = UL/v, (—);
temperature of fluid, (equation P-3),
C°F);

flow velocity in x-direction, (equation
P-1), (ft/h);

reference flow velocity, (ft/h);

flow velocity in y-direction, (equation
P-1), (ft/h);

distance measured along wall in same
direction as mainstream (ft);

distance measured normal to the wall,
(ft);

parameter relating to acceleration of
mainstream, 8 = 1/(1 — n/2), (equa-
tion OS-1);

“A” thickness of the velocity boundary
layer, (ft);

displacement thickness,

= [T (1 — ufug) dy, (f0);

momentum thickness,

= [ (ufuc) (1 — ufuc) dy, (ft);

shear thickness, = ug/(0u/oy),;
defined as the distance from the surface
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to the point where the dynamic pressure
is one-half of its value outside the
boundary layer, (Table 1), (ft);

4, “A” thickness of the thermal boundary
layer, (ft);

4y,  thermal displacement thickness,
= |7 1t — te)/(ts — te)]1dy, (f0);
d,,  convection thickness,
== [ (ufue) [(t — te)/(ts — ta)] dy, (ft);
4,,  conduction thickness,
= — (15 — te)/(01/Sy)s, (f1);
4., ‘“mixed thermal thickness™,
= v/[4 + 11-8248);
7, Dimensionless space co-ordinate,
= p A [(1/v B) (dug/dx)], (equation
O0S-1), (—);
9, Dimensionless temperature difference,
= (t — t5)/(te — 15), (equation OS-2),
(—);

s dynamic viscosity of fluid, (Ib/ft h);
v, kinematic viscosity of fluid, (ft?/h);
Ps fluid density, (Ib/ft?);

o, Prandtl number, = cu/k, (equation
0S-2), (—);
T, shear stress in fluid, (1bf/ft?).
Subscripts
G, stream  conditions  just  outside
boundary layer;
s, fluid conditions adjacent to the surface.
1. INTRODUCTION
The problem considered
DURING the last twenty years, numerous

approximate methods have been proposed for
calculating heat-transfer coefficients at points
on the surface of an isothermal body. When
applied to a particular problem, the amounts
of computation involved vary greatly from one
method to another. However, no comprehensive
survey of the relative accuracy of the methods
has been made; there is therefore no way of
establishing whether accuracy increases with
computational labour, or of deciding which
method is preferable for a given purpose.

The present paper does not fully answer the
questions just raised, but it does throw some
light on them: each of the methods is applied to
the same problem, that of heat transfer from a

D. B. SPALDING and W. M. PUN

cylinder in cross-flow, and the results are com-
pared. Experimental data of Schmidt and
Wenner [1] are available for this situation, and
the theoretical predictions can be compared with
these. Unfortunately, as has been demonstrated
by Kestin er al. [2], the presence of even
small intensities of turbulence in the free
stream can appreciably augment the heat
transfer coefficient; consequently, there are still
no experimental data available for situations
which are sufficiently close to that postulated in
the calculation to act as standards of comparison
for the theoretical predictions.

Mode of presentation

It would be impractical to describe each of
the theoretical methods in details. Instead we
attempt to display their essential features by
means of Table 1. In addition to compactness,
this device has the advantage of permitting
differences and similarities between methods to
be easily discerned; it further permits the
description of the methods in the text to be
kept in general terms

Since this description necessarily relates to
mathematical equations and concepts. these
are introduced in section 2. Derivations are not
given however, since these may be found in
recent papers published in the present journal
[3, 4, 5]. Section 3 provides the discussion of
Table 1 and of calculation methods in general.
The results of applying the methods to the
circular cylinder problem will be found in
section 4.

2. EQUATIONS
2.1. Partial differential equations
For a fluid of uniform properties flowing in a
two-dimensional,* steady, laminar boundary
layer, at low Mach Numbers, the exact calcula-
tion of the heat transfer rate requires the
solution of the following partial differential
equations:

Continuity:
ou v 0 -1
ox T ay @

* The existence of the Mangler Transformation [6]
connecting two-dimensional and axi-symmetrical flows
permits us to restrict attention to the former.
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Momentum:
ou du dug 2u
vty —tegr g (BD
Energy:
ot ot k 0%

The boundary conditions which we shall here
consider are those corresponding to an iso-
thermal impervious wall, ie.: u=v =0 and
t=tsaty =0;andu = ugandt =tgaty = 0

2.2. Ordinary differential equations for “similar”
boundary layers
For flows in which dug/dx is proportional to
ug", where n is a constant, it is shown in [3] and
[5] that the above partial differential equations
reduce to the following ordinary ones:

[ — =0

& +off =0 (0S-2)
where the prime signifies differentiation with

respect to the dimensionless distance, .
Here the boundary conditions are:

f=f=0=0aty—0;f =0 =

2.3. Ordinary differential equations obtained by
integration
The partial differential equations (P-1), (P-2)
and (P-3) may be integrated formally with
respect to y. There results:

(08-1)
and

1 aty-—> oo,

Integral momentum equation:

g d5" By f 51) 8 dug
Sodx %, T (zf"s;‘, 5 dx ©OFD
Integral energy equation:
ug d4; 2 4, A dug
v dx o d, 7 dx
The integral energy equation may also be
written in the form

d 1 dug\™" 11 duc\'?G
el lp &) o] =4 (5 ) 5o

Equations (P-2) and (P-3) may also be
multiplied by y*, where k =1, 2, 3, . . ., before
integration with respect to y, which thereupon

i

(OI-2)
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gives the “kth moment” integral momentum
equation and the “kth moment” integral energy
equation respectively.

2.4. Ordinary differential equations based on
guesswork
In “similar” boundary layers, the quantities
8,/8, and 8,/8, depend only on (8%/v) (dug/dx),
while the quantities 4,/4, depend only on
{(4Yv) (dug/dx), and o. Equation (OI-1) can
therefore be written as:

ug 43 8 dug
Pt ( ‘dy) (Ol-1a)
while (OI-2) becomes
ug da: 42 dug .
e F (0', - —d;) (OI-2a)

Here F(...) simply means: “‘some function
of ...”; of course the function is different in
each case.

By analogy, one may suppose that similar
equations hold for other boundary layer thick-
nesses, e.8. 8;, 8, 4, 4,. Leaving the subscripts
open, these equations may be written as:

ug dé 8% dug
o 4o F(; e ) (0G-1)
and
ug dA2 ‘42 dMG
4o 48 F(T e g). (0G-2)

Two other differential equations which may
be considered under the above heading are those
introduced by Spalding [7], by way of argu-
ments too devious to be described here. They are:

o [8;\2 d \ ‘u(;)“’? B ‘A 5 du(;)
) o {"4(3;[_ (5

and (0G-3)

84\ o _ p(A°85 dug
i) ety = (2 ). 00

Ua

All the equations with OG numbers are
exact when ug(x) obeys the relation mentioned
in section 2.2, ie. when the boundary layers
are “similar”. Their use in other circumstances
involves some inaccuracy.
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2.5. Algebraic equations

Other equations which are exact for “similar”
boundary layers but not in general include those
for the thickness ratios. Only the more important
ones are listed here. In some cases the ratios
are known by special symbols, viz. Hy,, Hyy: in
others it is necessary to utilize the symbol H (.. .)
without suffix, which signifies: “‘some function
of ...”,asinthe case of F (.. ..

L P
nom (L) e
R o O I
ST e

These functions, like those appearing in
section 2.4, may be tabulated by reference to
the solutions of equations (OI-1) and (OI-2).
Such tabulations may be found in references
[3. 4, 51.

For a “similar” boundary layer it is of course
possible to replace dug/dx in the argument of the
OG and A equations by vg/[x(1 — n)], where #,
the constant mentioned in section 2.2,
characterizes the mainstream flow. Then the
“similar” solutions give rise to algebraic
equations of the type:

8% ug x duc,)
v F (u‘a ke (A-5)
and
A? Ua " x du(;
v x (EZ o) (A-6)

Other algebraic equations have been intro-
duced by particular authors; thus Tifford [8]
makes use of:

(li(j) — (0.980—0-02)3/2
84 effective

bl 4 4/4?% dua
~ [(84)&Ctuul B AL S (A-T)

where of course ug/6, = 7s/u and the suffixes
“effective” and ‘‘actual” indicate how uq/8,
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should be modified to improve the accuracy of
Lighthill’s method [9] in certain cases. The cqua-
tion is approximately true for “similar” solu-
tions.

Schuh [10] employs functions connecting 5
with (8%/v) (duc/dx). G with p and (83/v) (due/dar.
All these are obtained from the “similar”
solutions.

Merk [11] uses the function

X
Ua dX.
0

This too is valid for the “similar” solutions:
Merk assumes that it is generally valid.

B 27 dug

ll(;z dx (A-b)

3. METHODS OF PREDICTING HEAT TRANSFER

3.1. Class number

We follow Smith and Spalding {12] in classi-
fying calculation methods according to the
number of differential equations which are
solved: thus Class 1 methods (e.g. Eckert [13])
requires solution of only one equation, while
Class 2 methods (e.g. Squire [14]), involve
solution of two equations.

The fourth row of Table 1 gives the Class
number of ecach method; which equations are in
question may be seen by reference to the entries
under “‘velocity boundary layer”, ‘‘thermal
boundary layer™ or both.

In Class 0 falls the method of Stine and Wan-
lass [15] who predict heat transfer rates without
solving any differential equation; these authors
make reference directly to equation (A-5) or
(A-6) which they assume to hold generally.

3.2. Exact methods

The only author whose method of solution
is exact is Frossling [16], who solved the partial
differential equations (P-1), (P-2) and (P-3) by a
series method. Frossling provided general func-
tions permitting the calculation of heat transfer
coefficients in particular circumstances as an
infinite series. In practice the accuracy of this
method is limited by the fact that it is only
practicable to use a few terms of the series.

3.3. Methods using ordinary differential equations
Most of the methods surveyed in Table |
require the solution of one or more of the
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ordinary differential equations listed in sections
2.3 and 2.4. In these equations x is the indepen-
dent variable, and u¢ and dug/dx are functions
of x which are given for a particular problem.

The F-functions appearing in the equations are
supposed universal in character; this is why the
methods give only approximate results. Usually
the F-functions are derived from the “similar”
solutions, although other choices may be made;
thus linear forms of F-function, approximating
those deduced from the “similar™ solutions, are
very popular because they permit solution of the
differential equation as a quadrature.

The solution of the equation itself may proceed
by several methods, these include: forward
integration, carried out numerically or graphic-
ally; a single quadrature which is permissible if
the linear F-function is used; and repeated
quadrature which gives the accuracy of numerical
integration by incorporating an error term into
the quadrature procedure.

Often the equation solved vields the distribu-
tion of one sort of boundary layer thickness over
the body surface, while a different boundary layer
thickness is the one of interest; thus 3,(x) may
have been obtained while 4,(x) is required. In
this case the required boundary layer thickness
is deduced by subsequent employment of the
auxiliary equations represented by (A-1), (A-2),
(A-3) and (A-4).

Headings in Table 1 indicate which method
uses which practice. For more details, the reader
is referred to the original works.

3.4. Remarks about the methods of Merk [11]
and Lees [17]

In the general form of Merk’s method [11],
the partial differential equations (P-1), (P-2) and
(P-3) are solved in a series form; the method is
thus an exact one if sufficient terms of the
series solution are taken. Unfortunately, few of
the coefficients appearing in the solutions have
been evaluated; as a result, only the first term
in the series can be used. The neglect of the higher
terms causes error in the heat-transfer predic-
tion, except when the boundary layer is a
“similar” one.

Inspection of Table 1 shows that, in Merk’s
method, the boundary layer thickness is ob-
tained from the evaluation of a single quadrature
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followed by the reference to a function derived
from the “similar” solutions. The method is
thus akin to others which have been classified
as belonging to Class 1; this classification is
therefore allotted to Merk’s method also.
Lees” method is put in the same class for the same
reason.

4. APPLICATION TO CIRCULAR CYLINDER

4.1. Description of system

Each of the methods analysed was applied to
the problem of calculating the distribution of the
Nusselt number Nu around the leading half of a
circular cylinder in a transverse air stream. The
following assumptions were made: the flow is
laminar; the surface temperature of the cylinder is
uniform; the temperature difference between the
air stream and the cylinder surface is small so
that the fluid properties may be taken as uni-
form; the Prandtl number for air is 0-7.

The stream velocity distribution out-
side the boundary layer was taken to be

U(;fU
= 3-631(x/L) — 3-275(x/L)® — 0-168(x/L) (4.1)

The coefficients in the above series expansion
were given by Eckert [13], who deduced them
from measurements of pressure distribution
corresponding to a Reynolds number of 170000
by Schmidt and Wenner [l]. Fig. 1 shows the
stream velocity distribution represented by
equation (4.1).

4.2. Results of calculation

In performing the calculations, some numerical
integrations were unavoidable; these were
carried out using Simpson’s Rule, generally with
an x/L interval of 0-05.

The results of the computations are presented
in graphical form with the heat transfer para-
meter Nu/+/Re as ordinate and the dimensionless
distance x/L as abscissa in Figs. 2(a—c). As
Frossling’s curve can be regarded as an exact
one (though its accuracy beyond x/L = 0-45 is
doubtful), it is included in each of the relevant
figures to serve as a standard of comparison
with other approximate methods.

It will be noted that most calculations were
carried out up to x/L = 0-6 only, due to the
limitation of the auxiliary functions available.
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FiG. 1. Velocity distribution outside the boundary
layer for a circular cylinder, as represented by
equation (4.1).

In any case all methods become of uncertain
accuracy close to the separation point, which was
estimated to lie between x/L = 0-6 and 0-7.

4.3. Experimental results

For the problem considered in section 4.1
several experimental results are available, e.g.
those of Klein [18], Small [19], Kroujilin {20],
Schmidt and Wenner [1], Comings et al. [21],
Giedt [22, 23], Zapp [24], and Kestin ez al [2].

As has been demonstrated by Comings et al.
[21], Giedt [23], Zapp [24], and more recently
Kestin et al. [2], the presence of even small
intensities of turbulence in the free stream
influences the heat transfer coefficients appreci-
ably. Unfortunately, the experimental data
available so far are either for unknown intensities
of free stream turbulence or for known intensities
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of the order of 1 per cent and higher. Thus therc
are still no experimental data available for
situations which are sufficiently close to that
postulated in the calculations to act as standards
of comparison for the theoretical predictions.
As a rough comparison, however, we shall use
the experimental data obtained by Schmidt and
Wenner [1] for an intensity of free stream turbu-
lence estimated by Kestin er al. [2] to be of the
order of 0-9 per cent. It was shown by Eckert
[13] that the heat transfer coefficients measured
by Schmidt and Wenner correlate well into a
single curve if those for very high Reynolds
numbers are excluded. These average values,
taken from [25], are plotted on each of Figs.
2(a~c) along with the various theoretical
predictions.

4.4. Comparison of methods

Ease of computation. The fifteen methods used
can be broadly divided into two groups: group 1
includes methods which require only simple
algebra or simple (analytical) integration for the
evaluation of local heat transfer coefficients;
group 2 includes those which require numerical
or graphical integration.

In order of simplicity of use the list of methods
under group 1 runs: Frossling, Stine and Wan-
lass, Lees/Ambrok [26], Skopets [27], Smith
and Spalding (for 4,,), and Merk; that under
group 2: Seban/Drake [28/29], Allen and Look
[30], Smith and Spalding (for 4,), Squire,
Eckert/Eckert and Livingood, Schuh, Lighthill,
Tifford, and Spalding.

Of course, in the above comparison it is
presupposed that for any particular problem the
requisite auxiliary functions are available and
that the stream velocity is expressible by a
power series of finite terms. It seems appropriate
to remark here that the methods of Allen and
Look, Lees, Ambrok, Squire, Lighthill, Tifford,
Schuh, Spalding, Merk (asymptotic series ex-
pansion method) and Skopets are not restricted
by Prandtl number of the fluid as far as the
availability of the auxiliary function is concerned.

ACCURACY

As mentioned earlier the average experimental
curve by Schmidt and Wenner cannot be relied
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FIG. 2(a). Nu/+/ Re versus x/L for circular cylinder (¢ = 0'7) as predicted by different methods.

upon as a standard of comparison of the various
theoretical methods. The discussion following
will lean heavily on the fact that up to x/L = 045
Frossling’s solution may be regarded as an
exact one.

Reference to Fig. 2(a) shows that though the
Class 0 method of Stine-Wanlass gives the
correct solution at the forward stagnation point,
it underestimates the heat transfer coefficients
in other regions; the discrepancy is seen to
increase with the pressure gradient.

With the exception of Allen-Look’s curve,
which is shown in Fig. 2(¢c) in a different scale,
all the curves obtained by the Class 1 methods
are displayed in Fig. 2(a). It is seen that Allen—
Look’s method considerably overestimates the

heat transfer coefficients; at the forward stagna-
tion point, the predicted value is twice the
theoretically correct one. The methods of Lees
and Ambrok, which give identical solutions, also
have poor accuracy: they underestimate the heat
transfer coefficients in the region of negative
pressure gradients, but tend to overestimate them
in the region of positive pressure gradients.
The methods of Eckert/Eckert-Livingood (for
4,), Seban/Drake, Smith~Spalding (for both
4, and 4,,), and Merk all give correct solutions
at the forward stagnation point. Except for the
curve of Seban/Drake, which clearly has poor
accuracy, all the other four curves agree fairly
well with that of Fréssling throughout the whole
range considered. Large discrepancies only
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FiG. 2(b). Nu/+/Re versus x/L for circular cylinder (¢ = 0-7) as predicted by different methods.

occur after x/L = 0-45, where Frossling’s curve
can no longer be relied upon as a standard of
comparison. If the experimental curve of
Schmidt-Wenner is taken as indicating the
correct trend for large values of x/L, the methods
of Merk and Smith-Spalding (for 4,,) are the
better ones, the difference between these two
curves being less than 1 per cent.

Figure 2(b) shows the curves by the Class 2
methods of Frossling, Lighthill, Tifford,
Spalding, Squire, Schuh and Skopets. It is seen
that Lighthill’s method overestimates the heat
transfer coefficients, at least in the region of
negative pressure gradients, where the dis-
crepancy is seen to increase with decrease of
pressure gradient, the maximum being + 18 per

cent at the forward stagnation point; the method
is quite accurate in the region of small pressure
gradients. Tiffords’s curve represents an im-
provement over Lighthill’s, but still lies above
that of Frossling with a maximum discrepancy
of 5 per cent. Spalding’s curve agrees well with
Frossling’s up to x/L = 0-4, thereafter the two
diverge rather rapidly with Spalding’s below
Frossling’s. It is noted that Spalding’s curve
follows Schmidt-Wenner’s experimental one
quite faithfully in shape throughout the whole
range.

Squire’s curve displays the same generally
flatter appearance as those of Lees and Ambrok,
which also use the flat plate solutions to derive
their auxiliary functions. Compared with
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Frossling’s method, Squire’s is quite accurate. Method
The curves of Schuh and Skopets agree fairly
well with Frossling’s and with those of Smith- Merk
Spalding (for 4,,) and Merk (Fig. 2a). Smith-Spalding (for 4,,)
On a smaller scale, Fig. 2(c) shows the three Skopets
widely different curves of Allen-Look, Lighthill Schuh
and Lees/Ambrok together with those of Eckert/Eckert-Livingood
Frossling and Schmidt-Wenner. (for 4,)
To summarize, we list the methods used in Smith-Spalding (for 4,)
order of accuracy based on comparison with Squire*
Frossling’s “‘exact” solutions in the range Spalding
0 < x/L < 0-5, as follows: Tifford

Class Accuracy

1

1

2 Fwithin 1-3
2| percent

within 3-5
per cent

NN = -
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Stine-Wanlass 0
Seban/Drake 1 | within 10-20
Lees/Ambrok* 1 per cent
Lighthill* ZJ

Allen—Look* 17 within 100

S per cent

It should be noted that this table cannot be
taken as generally valid; had a surface of
different geometry been chosen, the “order of
merit” might have been different. However, it is
reasonable to suppose that the methods dis-
tinguished by an asterisk above will always be
relatively poor, since they do not even give the
correct answer for the stagnation point. Further,
had a problem been considered in which only a
part of the periphery was at a different tempera-
ture from the mainstream, there is no doubt
that the Class 2 methods would prove superior
to the Class 1 methods (except perhaps for
Skopets’ method).

5. CONCLUSIONS

(i) Many methods are available for predicting
heat transfer coefficients for laminar, uniform-
property boundary layer flows. When applied
to a particular problem the accuracy and amount
of computational labour involved vary greatly
from one method to another. It is, however, not
generally true that accuracy increases with
computational labour. Often, the choice of the
method is dictated by the appropriate auxiliary
functions available.

(ii) The methods using “‘similar’ solutions as
their auxiliary functions are generally more
accurate than those using flat plate solutions
alone.

(iii) Accurate experimental data for an in-
tensity of free stream turbulence close to zero
are needed before definite conclusions can be
drawn as to the relative accuracy of the various
methods.
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Résumé—Quinze méthodes de détermination des coefficients de transmission de chaleur en régime
laminaire sont étudiées et classées. Chacune de ces méthodes est ensuite appliquée au calcul de la distri-
bution du nombre de Nusselt sur le demi bord d’attaque d’un cylindre circulaire placé dans un écoule-
ment laminaire. Il existe de grandes différences entre les résultats prévus par les théories.

Les résultats sont comparés a la solution exacte de Frossling et aux données expérimentales de
Schmidt et Wenner.

Faute de données expérimentales plus sfires on n’a pu tirer aucune conclusions définitives sur la

précision relative des méthodes théoriques.

Zusammenfassung—Fiinfzehn Methoden zur Berechnung laminarer Wirmeiibergangskoeffizienten
werden untersucht und klassifiziert. Jede wird zur Berechnung der Verteilung der Nusseltzahl an der
Vorderseite eines Kreiszylinders in laminarer Stromung herangezogen. Die Voraussagen der einzelnen
Theorien zeigen grosse Unterschiede.
Fin Vergleich wird mit der “exakten” Losung von Frossling und den Versuchswerten von Schmidt
und Wenner aufgestellt. Wegen Fehlens zuverldssigerer Versuchswerte kann die relative Genauigkeit
der theoretischen Methoden nicht endgiiltig beurteilt werden.

AHHOTAIMA —AHAIMBUPYIOTCA U KJIACCHPUIMPYIOTCA TNATHAAIATh MeTOLOB ONpPeJeneHIs
k03 dunuenTOB TemIo00MeHa B TaMHHADHOM MOTOKe. 3aTeM KaKIBIL M3 HUX NPHMEHAETCA K
3aflade pacuéra pacmpefledeHusa umcaa HycceapTa Ha mepemueil MOJOBUHE ITOBEPXHOCTH
Kpyriaoro mmHApa. [lokazaHo, 4TO MMEIOTCA CYMIECTBEHHbE PA3JIHYUA IIPH IT0.Ib30BAHUH
PA3HEIMU TEOPUAMM.

IIpuBopuTca cpapHeHHe «TOYHOro» pemeHHA DpECCIUHIA U DKCIEPUMEHTAILHBIX [aH-
ueix [IImuara u Bennepa. 13-3a HegocraTKa 6ollee HaJ@KHBIX DKCIEPMMEHTAIbHBIX JRHHEX
HeIb3s CHeT4Th OKOHUATeIbHEIE BEBOABL 00 OTHOCUTENBHOI TOUHOCTU TeOPeTHICCKNX MeTO0B .



