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Abstract-Fifteen methods for predicting laminar heat transfer coefficients are analysed and classified. 
Then each is applied to the problem of calculating the distribution of Nusselt number around the 
leading half of a circular cylinder in laminar flow. Large differences are shown to exist beween the 
predictions of the theories. 

Comparison is made with the “exact” solution of Frossling and the experimental data of Schmidt and 
Wenner. Short of more reliable experimental data, no final conclusions can be drawn about the 

relative accuracy of the theoretical methods. 
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NOTATION 

specific heat of fluid, (equation P-3), 
(Btu/lb “F) ; 
a function used in Skopets’ method, 
(Table 1); 
dimensionless stream function defined 
by 
f = (#/UC) &(ducldx) (l/B 41, 

(I) being defined by 
u = a#/+), (equation OS-l), (-); 
- u--1/3 [(l/p) (O;/V) (duc/dx)]-1’2, 
gquation 01-3), (-); 
ratio of displacement thickness to 
momentum thickness, (equation A-l), 
(-); 
ratio of momentum thickness to shear 
thickness, (equation A-2). ( - ); 
local heat transfer coefficient 
= - k@t/iTY),/(ts - tG), (Btu/ft2h “F); 
thermal conductivity of fluid, (equation 
P-3), (Btu/ft h”F); 
reference length of the body; diameter 
for circular cylinder, (ft); 
E uc (d”uo/dx”)/(duo/dx)“, ( - ); 
local Nusselt number, G hL/k, ( - ); 

* Professor of Heat Transfer. 
t Research student. 

E [(l/p) (d4d2/~) (duo/dx)]““; thus for 
“similar” flows 
p = ,-l/3, from equations (43) and 
(46) in [26], (equation 01-3), ( - ) ; 
Reynolds number, = UL/v, ( - ); 
temperature of fluid, (equation P-3), 
(OF); 
flow velocity in x-direction, (equation 
P-l), (ft/h); 
reference flow velocity, (ft/h); 
flow velocity in y-direction, (equation 
P-l), (ft/h); 
distance measured along wall in same 
direction as mainstream (ft) ; 
distance measured normal to the wall, 
(ft) ; 
parameter relating to acceleration of 
mainstream, /3 E l/(1 - n/2), (equa- 
tion OS-l); 
“A” thickness of the velocity boundary 
layer, (ft) ; 
displacement thickness, 

= ]; (1 - +G) dy, (ft); 

momentum thickness, 

= jr (+G) (1 - +G) dy, (ft); 

shear thickness, EE Uo/(&/8y)s; 
8D.P. defined as the distance from the surface 
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to the point where the dynamic pressure 
is one-half of its value outside the 
boundary layer, (Table l), (ft) ; 
“A” thickness of the thermal boundary 
layer, (ft) ; 
thermal displacement thickness, 

= ]; [(t - fG)/(ts - tG)] dy, (ft); 

convection thickness, 

,,~~u~~~~‘,~~c~n~~~/(~s - to)] dy, (ft) ; 

= - (ts - tG)/@&)s, (ft); 

“mixed thermal thickness”. 
= \,‘[A; + 11.824;]; 
Dimensionless space co-ordinate, 
=-~: J’ x”[(l/v ,@ (duo/dx)], (equation 

OS-l), (- ); 
Dimensionless temperature difference, 
= (r - ts)/(fG - ts), (equation OS-2), 

(-); 
dynamic viscosity of fluid, (lb/ft h); 
kinematic viscosity of fluid, (ft2/h); 
fluid density, (lb/f@); 
Prandtl number, 5 cplk, (equation 

OS-2), ( - ); 
shear stress in fluid, (lbf/ft2). 

Subscripts 

C, 

s, 

stream conditions just outside 
boundary layer ; 
fluid conditions adjacent to the surface. 

1. INTRODUCTION 

The problem considered 
DURING the last twenty years, numerous 
approximate methods have been proposed for 
calculating heat-transfer coefficients at points 
on the surface of an isothermal body. When 
applied to a particular problem, the amounts 
of computation involved vary greatly from one 
method to another. However, no comprehensive 
survey of the relative accuracy of the methods 
has been made; there is therefore no way of 
establishing whether accuracy increases with 
computational labour, or of deciding which 
method is preferable for a given purpose. 

The present paper does not fully answer the 
questions just raised, but it does throw some 
light on them: each of the methods is applied to 
the same problem, that of heat transfer from a 

cylinder in cross-flow, and the results are com- 
pared. Experimental data of Schmidt and 
Wenner [l] are available for this situation, and 
the theoretical predictions can be compared with 
these. Unfortunately, as has been demonstrated 
by Kestin et al. [2]. the presence of even 
small intensities of turbulence in the free 
stream can appreciably augment the heat 
transfer coefficient; consequently, there are still 
no experimental data available for situations 
which are sufficiently close to that postulated in 
the calculation to act as standards of comparison 
for the theoretical predictions. 

Mode of presentation 
It would be impractical to describe each of 

the theoretical methods in details. Tnstead we 
attempt to display their essential features by 
means of Table 1. In addition to compactness, 
this device has the advantage of permitting 
differences and similarities between methods to 
be easily discerned; it further permits the 
description of the methods in the text to be 
kept in general terms 

Since this description necessarily relates to 
mathematical equations and concepts. these 
are introduced in section 2. Derivations are not 
given however, since these may be found in 
recent papers published in the present journal 
[3, 4, 5-J. Section 3 provides the discussion of 
Table 1 and of calculation methods in general. 
The results of applying the methods to the 
circular cylinder problem will be found in 
section 4. 

2. EQUATIONS 

2.1. Partial difSerentia1 equations 
For a fluid of uniform properties flowing in a 

two-dimensional,* steady, laminar boundary 
layer, at low Mach Numbers, the exact calcula- 
tion of the heat transfer rate requires the 
solution of the following partial differential 
equations : 

Continuity : 

(P-1) 

* The existence of the Mangler Transformation [6] 
connecting two-dimensional and axi-symmetrical flows 
permits us to restrict attention to the former. 
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Momentum : gives the “kth moment” integral momentum 

ati au dUlJ a%4 equation and the ‘“kth moment” integral energy 
u--+u--=uodx_+V~j2 ax ay (P-2) equation respectively. 

Energy : 

u at + u at = _k_ azt 

2.4. Ordinary differential equations based on 
guesswork 

ax ay cp aya* (P-3) In “similar” boundary layers, the quantities 

The boundary conditions which we shall here 
8,/S, and 6,/6, depend only on (S$J) (duo/dx), 

consider are those corresponding to an iso- 
while the quantities AZ/A, depend only on 

thermal impervious wall, i.e.: u = 2’ = 0 and 
(A$) (dzlo/dx), and C. Equation (01-l) can 

t=tsaty=O;andu=r&andt=toaty=co. 
therefore be written as. 

2.2. Ordinary deferential equatio~s~or “similar” 
boundary layers 

For flows in which duo/dx is proportional to 
!&.z~, where n is a constant, it is shown in [3] and 
[5] that the above partial differential equations 
reduce to the following ordinary ones: 

f”’ +fs” + /3(1 -.f’2) = 0 (OS-l) 
and 

0” + af8’ = 0 (OS-2) 

where the prime signifies differentiation with 
respect to the dimensionless distance, 9. 

Here the boundary conditions are: 

f=f’=6=Oat~=O;,f’=6=1at~--f~. 

2.3. Ordinary differential equations obtained by 
integration 

The partial differential equations (P-l), (P-2) 
and (P-3) may be integrated formally with 
respect to y. There results: 

UG dSt “-_F !i”? 
Y dx i i v dx 

(O&la) 

while (01-2) becomes 

Here F(. . .) simply means: “some function 
of . * .” ; of course the function is different in 
each case. 

By analogy, one may suppose that similar 
equations hold for other boundary layer thick- 
nesses, e.g. 6,, 6,, A,, A,. Leaving the subscripts 
open, these equations may be written as: 

UG da2 -_ --- = 
v dx 

F !!; d?xG 
i > 

(OG-1) 

and 

Integral momentum equation: Two other differential equations which may 
be considered under the above heading are those 
introduced by Spalding f7], by way of argu- 
ments too devious to be described here. They are: 

Jntegral energy equation : 

UG dd:‘, 2 A, A; duo 
v dx (T A, - -2Y TiX’ 

(01-2) 
and (OG-3) 

The integral energy equation may also be g 
written in the form 

All the equations with OG numbers are 
exact when u&x) obeys the relation mentioned 

Equations (F-2) and (P-3) may also be in section 2.2, i.e. when the boundary layers 
multiplied by y”, where k = 1, 2, 3, . . ., before are “similar”. Their use in other circumstances 
integration with respect to y, which thereupon involves some inaccuracy. 
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2.5. Algebraic equations 
Other equations which are exact for “similar” 

boundary layers but not in general include those 
for the thickness ratios. Only the more important 
ones are listed here. In some cases the ratios 
are known by special symbols, viz. HIZ, Hz,: in 
others it is necessary to utilize the symbol H (. . .) 
without suffix, which signifies: “some function 
of . . .“. as in the case of F (. . ). 

(A-3) 

These functions, like those appearing in 
section 2.4, may be tabulated by reference to 
the solutions of equations (01-l) and (01-2). 
Such tabulations may be found in references 
[3, 4, 51. 

For a “similar” boundary layer it is of course 
possible to replace duo/dx in the argument of the 
OG and A equations by u~/[x(l - rz)], where II, 
the constant mentioned in section 2.2, 
characterizes the mainstream flow. Then the 
“similar” solutions give rise to algebraic 
equations of the type: 

(A-5) 

and 

(A-6) 

Other algebraic equations have been intro- 
duced by particular authors: thus Tifford [8] 
makes use of: 

= (O.~~U-O.O~)~‘” effective 

where of course UC/S, = Q/P and the suffixes 
“effective” and “actual” indicate how UC/~, 

should be modified to improve lhc accur-ac) o!’ 
Lighthill’s method [9] in certain cases. The equa- 
tion is approximately true for “similar” solit- 
t iOilS. 

Schuh [IO] employs functions connecting /-J 
with (6:/v) (duc;/d.x), C with y and (X/V) (duc:,‘d.\-,. 
All these are obtained from the “similar” 
solutions. 

Merk [I I] uses the function 

This too is valid for the “similar” solutions: 
Merk assumes that it is generally valid. 

3. METHODS OF PREDICTING HEAT TRANSFER 

3.1. Class nwnbel 
We follow Smith and Spalding [12] in clarsi- 

fying calculation methods according to the 
number of differential equations which are 
solved : thus Class 1 methods (e.g. Eckert [13]j 
requires solution of only one equation, while 
Class 2 methods (e.g. Squire [14]), involve 
solution of two equations. 

The fourth row of Table 1 gives the Class 
number of each method; which equations are in 
question may be seen by reference to the entries 
under “velocity boundary layer”. “thermal 
boundary layer” or both. 

In Class 0 falls the method of Stine and Wan- 
lass [15] who predict heat transfer rates without 
solving any differential equation: these authors 
make reference directly to equation (A-S) or 
(A-6) which they assume to hold generall). 

3.2. Exact methods 
The only author whose method of solution 

is exact is Friissling [16], who solved the partial 
differential equations (P-l), (P-2) and (P-3) by :I 
series method. FrGssling provided general func- 
tions permitting the calculation of heat transfix 
coefficients in particular circumstances as an 
infinite series. In practice the accuracy of this 
method is limited by the fact that it is only- 
practicable to use a few terms of the series. 

3.3. Methods using ordinary diferential equations 
Most of the methods surveyed in Table 1 

require the solution of one or more of the 
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ordinary differential equations listed in sections 
2.3 and 2.4. In these equations x is the indepen- 
dent variable, and Uo and duojdx are functions 
of x which are given for a particular problem. 

The F-functions appearing in the equations are 
supposed universal in character; this is why the 
methods give only approximate results. Usually 
the F-functions are derived from the ‘“similar” 
solutions, although other choices may be made; 
thus linear forms of F-function, approximating 
those deduced from the “similar” solutions, are 
very popular because they permit solution of the 
differential equation as a quadrature. 

The solution of the equation itself may proceed 
by several methods, these include: forward 
integration, carried out numerically or graphic- 
ally; a single quadrature which is permissible if 
the linear F-function is used; and repeated 
quadrature which gives the accuracy of numerical 
integration by incorporating an error term into 
the quadrature procedure. 

Often the equation solved yields the distribu- 
tion of one sort of boundary layer thickness over 
the body surface, while a different boundary layer 
thickness is the one of interest; thus 8,(x) may 
have been obtained while O,(x) is required. In 
this case the required boundary layer thickness 
is deduced by subsequent employment of the 
auxiliary equations represented by (A-l), (A-2), 
(A-3) and (A-4). 

Headings in Table 1 indicate which method 
uses which practice. For more details, the reader 
is referred to the original works. 

and Lees 1171 
In the general form of Merk’s method [II], 

the partial differential equations (P-l), (P-2) and 
(P-3) are solved in a series form; the method is 
thus an exact one if sufficient terms of the 
series solution are taken. Unfortunately, few of 
the coefficients appearing in the solutions have 
been evaluated; as a result, only the first term 
in the series can be used. The neglect of the higher 
terms causes error in the heat-transfer predic- 
tion, except when the boundary layer is a 
“similar” one. 

Inspection of Table 1 shows that, in Merk’s 
method, the boundary layer thickness is ob- 
tained from the evaluation of a single quadrature 

followed by the reference to a function derived 
from the “similar” solutions. The method is 
thus akin to others which have been classified 
as belonging to Class 1; this classification is 
therefore allotted to Merk’s method also. 
Lees’ method is put in the same class for the same 
reason. 

4. APPLICATION TO CIRCULAR CYLINDER 

4.1. ~escr~pti#n of system 
Each of the methods analysed was applied to 

the problem of calculating the distribution of the 
Nusselt number A% around the leading half of a 
circular cylinder in a transverse air stream. The 
following assumptions were made: the flow is 
laminar ; the surface temperature of the cylinder is 
uniform; the temperature difference between the 
air stream and the cylinder surface is small so 
that the fluid properties may be taken as uni- 
form; the Prandtl number for air is 0.7. 

The stream velocity distribution out- 
side the boundary layer was taken to be 

UC/U 
= 363 1(x,/L) - 3*27.5(x/Q3 - O.l68(x,‘L)” (4.1) 

The coefficients in the above series expansion 
were given by Eckert [13], who deduced them 
from measurements of pressure distribution 
corresponding to a Reynolds number of 170000 
by Schmidt and Wenner [l]. Fig. 1 shows the 
stream velocity distribution represented by 
equation (4.1). 

4.2. Results of calculation 
In performing the calculations, some numerical 

integrations were unavoidable; these were 
carried out using Simpson’s Rule, generally with 
an x/L interval of 0.05. 

The results of the computations are presented 
in graphical form with the heat transfer para- 
meter Nu/Z/Re as ordinate and the dimensionless 
distance x/L as abscissa in Figs. 2(a-c). As 
Frtissling’s curve can be regarded as an exact 
one (though its accuracy beyond x/L = O-45 is 
doubtful), it is included in each of the relevant 
figures to serve as a standard of comparison 
with other approximate methods. 

It will be noted that most calculations were 
carried out up to x/L = O-6 only, due to the 
limitation of the auxiliary functions available. 
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* /L 
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FIG. 1. Velocity distribution outside the boundary 
layer for a circular cylinder, as represented by 

equation (4.1). 

In any case all methods become of uncertain 
accuracy close to the separation point, which was 
estimated to lie between x/L = 0.6 and 0.7. 

4.3. Experimental results 
For the problem considered in section 4.1 

several experimental results are available, e.g. 
those of Klein [18], Small [19], Kroujilin [20], 
Schmidt and Wenner [l], Comings et al. [21], 
Giedt 122, 231, Zapp [24], and Kestin et al [2]. 

As has been demonstrated by Comings et al. 
[21], Giedt [23], Zapp [24], and more recently 
Kestin et al. 221, the presence of even small 
intensities of turbulence in the free stream 
influences the heat transfer coefficients appreci- 
ably. Unfortunately, the experimental data 
available so far are either for unknown intensities 
of free stream turbulence or for known intensities 

of the order of 1 per cent and higher. Thus there 
are still no experimental data available for 
situations which are sufficiently close to that 
postulated in the calculations to act as standards 
of comparison for the theoretical predictions. 
As a rough comparison, however, we shall use 
the experimental data obtained by Schmidt and 
Wenner [l] for an intensity of free stream turbu- 
lence estimated by Kestin et al. [2] to be of the 
order of 0.9 per cent. It was shown by Eckert 
[13] that the heat transfer coefficients measured 
by Schmidt and Wenner correlate well into a 
single curve if those for very high Reynolds 
numbers are excluded. These average values, 
taken from [25], are plotted on each of Figs. 
2(a-c) along with the various theoretical 
predictions. 

4.4. Comparison qf methods 
Ease qf computation, The fifteen methods used 

can be broadly divided jnto two groups: group 1 
includes methods which require only simple 
algebra or simple (analytical) integration for the 
evaluation of local heat transfer coefficients; 
group 2 includes those which require numerical 
or graphical integration. 

In order of simplicity of use the list of methods 
under group 1 runs: FrGssling, Stine and Wan- 
lass, Lees/Ambrok [26], Skopets [27], Smith 
and Spalding (for O,), and Merk; that under 
group 2: Seban/Drake [28/29], Allen and Look 
[30], Smith and Spalding (for d,). Squire, 
Eckert/Eckert and Livingood, Schuh, Lighthill, 
Tifford, and Spalding. 

Of course, in the above comparison it is 
presupposed that for any particular problem the 
requisite auxiliary functions are available and 
that the stream velocity is expressible by a 
power series of finite terms. It seems appropriate 
to remark here that the methods of Allen and 
Look, Lees, Ambrok, Squire, Lighthill, Tifford, 
Schuh, Spalding, Merk (asymptotic series ex- 
pansion method) and Skopets are not restricted 
by Prandtl number of the fluid as far as the 
availability of the auxiliary function is concerned. 

ACCURACY 

As mentioned earlier the average experimental 
curve by Schmidt and Wenner cannot be relied 





METHODS FOR PREDICTING HEAT-TRANSFER COEFFICIENTS 245 

Eckert/Eckert and 
ivingood,A,method 

Stifle and Wan1 

0.3 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

FIG. 2(a). Nu/dRe versus x/L for circular cylinder (o = 0.7) as predicted by different methods. 

upon as a standard of comparison of the various 
theoretical methods. The discussion following 
will lean heavily on the fact that up to x/L = O-45 
FrGssling’s solution may be regarded as an 
exact one. 

Reference to Fig. 2(a) shows that though the 
Class 0 method of Stine-Wanlass gives the 
correct solution at the forward stagnation point, 
it underestimates the heat transfer coefficients 
in other regions; the discrepancy is seen to 
increase with the pressure gradient. 

With the exception of Allen-Look’s curve, 
which is shown in Fig. 2(c) in a different scale, 
all the curves obtained by the Class 1 methods 
are displayed in Fig. 2(a). It is seen that Allen- 
Look’s method considerably overestimates the 

heat transfer coefficients; at the forward stagna- 
tion point, the predicted value is twice the 
theoretically correct one. The methods of Lees 
and Ambrok, which give identical solutions, also 
have poor accuracy : they ~derestimate the heat 
transfer coefficients in the region of negative 
pressure gradients, but tend to overestimate them 
in the region of positive pressure gradients. 
The methods of Eckert/Eckert-Livingood (for 
43, SebanjDrake, Smith-Spalding (for both 
A, and d,), and Merk all give correct solutions 
at the forward stagnation point. Except for the 
curve of Seban/Drake, which clearly has poor 
accuracy, all the other four curves agree fairly 
well with that of Frbssling throughout the whole 
range considered. Large discrepancies only 
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FIG. 2(b). Nu/l/Re versus x/L for circular cylinder (0 = 0.7) as predicted by different methods. 

0.6 

0.5 Schuh - 

occur after x/L = O-45, where Frbssling’s curve 
can no longer be relied upon as a standard of 
comparison. If the experimental curve of 
Schmidt-Wenner is taken as indicating the 
correct trend for large values of x/L, the methods 
of Merk and Smith-Spalding (for d,J are the 
better ones, the difference between these two 
curves being less than 1 per cent. 

Figure 2(b) shows the curves by the Class 2 
methods of Frossling, Lighthill, Tifford, 
Spalding, Squire, Schuh and Skopets. It is seen 
that Lighthill’s method overestimates the heat 
transfer coefficients, at least in the region of 
negative pressure gradients, where the dis- 
crepancy is seen to increase with decrease of 
pressure gradient, the maximum being + 18 per 

cent at the forward stagnation point; the method 
is quite accurate in the region of small pressure 
gradients. Tiffords’s curve represents an im- 
provement over Lighthill’s, but still lies above 
that of Frossling with a maximum discrepancy 
of 5 per cent. Spalding’s curve agrees well with 
Frossling’s up to x/L = 0.4, thereafter the two 
diverge rather rapidly with Spalding’s below 
Friissling’s. It is noted that Spalding’s curve 
follows Schmidt-Wenner’s experimental one 
quite faithfully in shape throughout the whole 
range. 

Squire’s curve displays the same generally 
flatter appearance as those of Lees and Ambrok, 
which also use the flat plate solutions to derive 
their auxiliary functions. Compared with 
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0.6 

04 

0.2 

I 

0 + 

hmidt and Wenner 

llen and Look 

0.2 
__ 
0.3 0.4 0.5 0.6 0.7 

x/L 

FIG. 2(c). Nu/l/Re versus x/L for circular cylinder (0 = 0.7) as predicted by different methods. 

Frossling’s method, Squire’s is quite accurate. 
The curves of Schuh and Skopets agree fairly 
well with Frosshng’s and with those of Smith- 
Spalding (for 0,) and Merk (Fig. 2a). 

On a smaller scale, Fig. 2(c) shows the three 
widely different curves of Allen-Look, Lighthill 
and Lees/Ambrok together with those of 
FrGssling and Schmidt-Wenner. 

To summarize, we list the methods used in 
order of accuracy based on comparison with 
Frossling’s “exact” solutions in the range 
0 < x/L < O-5, as follows: 

Method 

Merk 
Smith-Spalding (for d,) 
Skopets 
Schuh 
Eckert/Eckert-Livingood 

(for d J 
Smith-Spalding (for A4) 
Squire* 
Spalding 
Tifford 

Class Accuracy 

1 7 1 
2 1 within 1-3 
21 per cent 

1 J 
1 
2 I within 3-5 
2 per cent 
2 
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Stine-Wanlass 
Seban/Drake 
Lees/Ambrok* 
Lighthill* 

0-l 3. D. B. SPALDING, Mass transfer through laminar 

1 within lo-20 
I ; 

boundary layers-l. The velocity boundary layer-. 

J 
per cent 

Inr. J. Heat Mass Transfer, 2. 15-32 (1961). 

2 
4. D. B. SPALDING and H. L. EVANS, Mass transfer 

1 -l-within 100 
J per cent 

5. 

It should be noted that this table cannot be 
taken as generally valid ; had a surface of 
different geometry been chosen, the “order of 
merit” might have been different. However, it is 
reasonable to suppose that the methods dis- 
tinguished by an asterisk above wilt always be 
relatively poor, since they do not even give the 
correct answer for the stagnation point. Further. 
had a problem been considered in which only a 
part of the periphery was at a different tempera- 
ture from the mainstream, there is no doubt 
that the Class 2 methods would prove superior 
to the Class 1 methods (except perhaps for 
Skopets’ method). 

6. 

through laminar boundary layers--2. Auxiliar) 
functions for the velocity boundary layer. IN. J. 
Heat Mass Tram@, 2, 199-221 (1961). 
D. B. SPALIXNG and H. L. EVANS, Mass transfer 
through laminar boundary layers-3. Similar solu- 
tions of the b-equation. Iwt. J. Heat Mas.~ Tran.\.j>~-. 
2, 314-341 (1961). 

Allen-Look* 

5. CONCLUSIONS 

(i) Many methods are available for predicting 
heat transfer coefficients for laminar, uniform- 
property boundary layer flows. When applied 
to a particular problem the accuracy and amount 
of computational labour involved vary greatly 
from one method to another. It is, however, not 
generaLly true that accuracy increases with 
computational labour. Often, the choice of the 
method is dictated by the appropriate auxiliary 
functions available. 

(ii) The methods using “similar” solutions as 
their auxiliary functions are generally more 
accurate than those using flat plate solutions 
alone. 

(iii) Accurate experimental data for an in- 
tensity of free stream turbulence close to zero 
are needed before definite conclusions can be 
drawn as to the relative accuracy of the various 
methods. 

1. 

2. 

7. 

8. 

9 

10. 

Il. 

12. 

13. 

14. 

15. 

16. 
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R&me-Quinze methodes de dktermination des coefficients de transmission de chaleur en r6gime 
laminaire sont &udiCes et classCes. Chacune de ces mithodes est ensuite appliquke au calcul de la distri- 
bution du nombre de Nusselt sur le demi bord d’attaque d’un cylindre circulaire placi dans un tcoule- 
ment laminaire. 11 existe de grandes diffkrences entre les r&,ultats p&us par les thCories. 

Les rksultats sont cornpar& & la solution exacte de FrGssling et aux donnkes expCrimentales de 
Schmidt et Wenner. 

Faute de donnees expkrimentales plus sfires on n’a pu tirer aucune conclusions dtfinitives sur la 
pr&ision relative des mtthodes thkoriques. 

Zusammenfassung-Fiinfzehn Methoden zur Berechnung laminarer Wlrmeiibergangskoeffizienten 
werden untersucht und klassifiziert. Jede wird zur Berechnung der Verteilung der Nusseltzahl an der 
Vorderseite eines Kreiszylinders in laminarer Striimung herangezogen. Die Voraussagen der einzelnen 
Theorien zeigen grosse Unterschiede. 

Ein Vergleich wird mit der “exakten” LGsung von FrGssling und den Versuchswerten von Schmidt 
und Wenner aufgestellt. Wegen Fehlens zuverlgssigerer Versuchswerte kann die relative Genauigkeit 

der theoretischen Methoden nicht endgiiltig beurteilt werden. 

AHH~T~~HJ~-~H~;~#~~PY~TC~ II K.laccm@aqMppmTcn rmTuanqaTb ~e~0g0~ onpene.nearm 
KOElI$@I~HeHTOB TeIIJIOO6MeHa B JBMHHBPHOM IIOTOKe. BaTeM KaH(AbIfi If3 HHX IIpiiMeHReTCR Ii 

aagase pac+Ta pacnpeAe;Iemrn snc;Ia Hycce:IbTa Ha nepenueti nonoB&lHe nosepxHocTii 
KpyrJIOrO I@I,ilHHjJpa. nOK333H0, YTO EtMeIOTCR CYqeCTBeHHbie p33JIWIllFI II&N1 IIO.~b:~OB3H1111 

Pa3HbIMEi TeOpHRMPI. 

~pPIBO~HTCH CpaBHeHPIe <(TOYHOrOD peLIIeHHR @,p8CCnHHI’a IZ 3KCtIePBMeHTa.qbHbIX RaH- 

HbiX IhMgTa ii BeHHepa. I/I3-33 HeAOCTaTKa 6OJIee Ha,@iH(HbiX 3KCIIePHMeHTUIbHbIX AaHHbIX 

He.?b311 Cae.?aTb OKOHY3Te~bHbIe BbIBOAbI 06 OTHOCHTelIbHOti TOYHOCTGI TeOPeTIFIeCKMX ,ieTOgOB. 


